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AIM
The aim of this meta-analysis was to evaluate the effect of statin therapy on plasma FFA concentrations in a systematic review andmeta-analysis of controlled clinical
trials.
METHODS
PubMed-Medline, SCOPUS, Web of Science and Google Scholar databases were searched (from inception to February 16 2015) to identify controlled trials
evaluating the impact of statins on plasma FFA concentrations. A systematic assessment of bias in the included studies was performed using the Cochrane
criteria. A random effects model and generic inverse variance method were used for quantitative data synthesis. Sensitivity analysis was conducted using the
leave-one-out method. Random effects meta-regression was performed using unrestricted maximum likelihood method to evaluate the impact of potential
moderators.
RESULTS
Meta-analysis of data from 14 treatment arms indicated a significant reduction in plasma FFA concentrations following treatment with statins (weighted mean
difference (WMD) –19.42%, 95% CI –23.19, �–15.64, P< 0.001). Subgroup analysis confirmed the significance of the effect with both atorvastatin (WMD –20.56%,
95% CI –24.51, –16.61, P < 0.01) and simvastatin (WMD –18.05%, 95% CI –28.12, –7.99, P < 0.001). Changes in plasma FFA concentrations were independent of
treatment duration (slope –0.10, 95%CI –0.30, 0.11, P= 0.354) andmagnitude of reduction in plasma lowdensity lipoprotein cholesterol concentrations (slope 0.55,
95% CI –0.17, 1.27, P = 0.133) by statins.
CONCLUSIONS
The results of the present study suggest that statin therapy may lower plasma FFA concentrations. The cardiovascular and metabolic significance of this
finding requires further investigation.
acol / 81:5 / 807–818 / 807
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Introduction

Inhibitors of 3-hydroxy-3methyl-glutaryl coenzyme A
(HMG-CoA), are known for their established efficacy in
decreasing cardiovascular outcomes and mortality in
both primary and secondary prevention [1–4]. The main
effect of statins is reducing plasma low density lipopro-
tein cholesterol (LDL-C) concentrations [5]. In addition,
statin therapy can reduce triglycerides and increase high
density lipoprotein (HDL) cholesterol concentrations plus
a plethora of non-lipid pleiotropic actions [6–12].

FFAs are non-esterified fatty acids that are released
from adipocyte triglyceride stores following lipolysis,
and from phospholipids after hydrolysis by phospholi-
pases [13]. FFAs promote the formation and release of tri-
glycerides by the liver leading to an overproduction of
very low density lipoprotein (VLDL) [14, 15] and conse-
quent development of atherogenic dyslipidaemia. On
the other hand, overproduction of VLDL and LDL can in-
crease the flux of plasma FFAs to the liver causing hepatic
insulin resistance and inflammation [16, 17].

Fatty acid metabolism was once considered to be un-
changed by statin therapy [18–20]. However, mild eleva-
tions in fatty acid synthesis were subsequently reported in
animal models [21] cultured cells [22], and after statin treat-
ment inmice [23]. Moreover, statinsmay also inhibit hepatic
synthesis of apolipoprotein B-100 and decrease the synthe-
sis and secretion of triglyceride-rich lipoproteins [24, 25].
The molecular mechanism by which statins reduce triglyc-
erides levels is not known with certainty. In this regard,
statins could affect hepatic FFA metabolism [26]. However,
studies evaluating the effects of statins on serum fatty acid
metabolism in humans are lacking and published data are
contradictory [27]. Therefore, the aim of this study was to
evaluate the effect of statin therapy on plasma FFA concen-
trations and calculate the size of this effect using a system-
atic review and meta-analysis of controlled clinical trials.
Methods

Search strategy
This study was designed according to the guidelines of the
2009 preferred reporting items for systematic reviews and
meta-analysis (PRISMA) statement [28]. PubMed-Medline,
SCOPUS, Web of Science and Google Scholar databases
were searched using the following search terms in titles
and abstracts (also in combination with MESH terms): (ator-
vastatin OR simvastatin OR rosuvastatin OR fluvastatin OR
pravastatin OR pitavastatin OR lovastatin OR cerivastatin
OR ‘statin therapy’ OR statins) AND (‘free fatty acid’ OR ‘free
fatty acids’ OR FFA OR FFAs). The wild-card term ‘*’ was
used to increase the sensitivity of the search strategy. No
language restriction was used in the literature search. The
search was limited to studies in humans. The literature
was searched from inception to February 16 2015.
808 / 81:5 / Br J Clin Pharmacol
Study selection
Original studies were included if they met the following
inclusion criteria: (i) being a controlled trial with either
parallel or crossover design, (ii) investigating the impact
of statin therapy, either as monotherapy or combination
therapy, on plasma/serum concentrations of FFAs, (iii)
treatment duration of at least 2 weeks and (iv) presenta-
tion of sufficient information on FFA concentrations at
baseline and at the end of follow-up in each group or
providing the net change values. Exclusion criteria were
(i) non-interventional trials, (ii) lack of an appropriate
control group for statin therapy, (iii) observational stud-
ies with case–control, cross-sectional or cohort design
and (iv) lack of sufficient information on baseline or
follow-up FFA concentrations.

Data extraction
Eligible studies were reviewed and the following data
were abstracted: 1) first author’s name, 2) year of publica-
tion, 3) study location, 4) study design, 5) number of
participants in the statin and control groups, 5) age, gen-
der and body mass index (BMI) of study participants, 6)
baseline concentrations of total cholesterol, low density
lipoprotein cholesterol (LDL-C), high density lipoprotein
cholesterol (HDL-C), and triglycerides, 7) systolic and
diastolic blood pressures and 8) data regarding baseline
and follow-up concentrations of FFAs.

Quality assessment
A systematic assessment of bias in the included studies
was performed using the Cochrane criteria [29]. The
items used for the assessment of each study were as
follows: adequacy of sequence generation, allocation
concealment, blinding, addressing of dropouts (incom-
plete outcome data), selective outcome reporting and
other potential sources of bias. According to the recom-
mendations of the Cochrane Handbook, a judgment of
‘yes’ indicated low risk of bias, while ‘no’ indicated high
risk of bias. Labelling an item as ‘unclear’ indicated an
unclear or unknown risk of bias.

Quantitative data synthesis
Meta-analysis was conducted using Comprehensive
Meta-Analysis (CMA) V2 software (Biostat, NJ) [30]. Net
changes in measurements (change scores) were calcu-
lated as follows: measure at end of follow-up � measure
at baseline. For single arm crossover trials, net change in
plasma concentrations of FFA were calculated by
subtracting the value after control intervention from that
reported after treatment. All values were collated as per-
cent change from baseline in each group, or percent
change in the statin group relative to control group.
Standard deviations (SDs) of the mean difference were
calculated using the following formula: SD = square root
[(SDpre-treatment)

2 + (SDpost-treatment)
2 – (2R × SDpre-treatment

× SDpost-treatment)], assuming a correlation coefficient
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(r) = 0.5. If the outcome measures were reported in
median and range (or 95% confidence interval [CI]),
mean and standard SD values were estimated using the
method described by Hozo et al. [31]. Where standard
error of the mean (SEM) was only reported, standard de-
viation (SD) was estimated using the following formula:
SD = SEM × square root (n), where n is the number of
subjects. To avoid the problem of double-counting in
randomized controlled trials with multiple treatment
arms and a common control group, the number of sub-
jects in the control group was divided by the required
comparisons.

A random effects model (using the DerSimonian–
Laird method) and the generic inverse variance method
were used to compensate for the heterogeneity of stud-
ies in terms of demographic characteristics of popula-
tions being studied and also differences in study design
and type of statin being studied [32]. Heterogeneity
was quantitatively assessed using I2 index. Effect sizes
were expressed as weighed mean difference (WMD)
and 95% confidence interval (CI). Subgroup analyses
were carried out to explore the impact of statin type
and treatment duration (< 12 weeks vs. ≥12 weeks) on
plasma FFA concentrations. In order to evaluate the influ-
ence of each study on the overall effect size, sensitivity
analysis was conducted using the leave-one-out method,
i.e. removing one study each time and repeating the
analysis [33-35].

Meta-regression
Random effects meta-regression was performed using
the unrestricted maximum likelihood method to evalu-
ate the association between calculated WMD and poten-
tial moderators including duration of treatment with
statins, dose of treatment (expressed as equivalent dose
of atorvastatin) and magnitude of LDL-C reduction by
statin therapy.

Publication bias
Potential publication bias was explored using visual in-
spection of Begg’s funnel plot asymmetry, Begg’s rank
correlation and Egger’s weighted regression tests. Duval
& Tweedie ‘trim and fill’ and ‘fail-safe N’ methods were
used to adjust the analysis for the effects of publication
bias [36].
Figure 1
Flow chart of the number of studies identified and included into the
meta-analysis
Results

Flow and characteristics of included studies
Firstly, 189 published studies were identified following
the database search. After reviewing the titles and
abstracts, 170 studies did not meet the inclusion criteria
and were excluded. Then, 19 full text articles were care-
fully assessed and reviewed. Ten of these studies were
excluded for the following reasons: non-interventional
design (n = 1), being non-original (n = 1), presenting in-
complete data (n = 2), not measuring plasma/serum
FFA concentrations (n = 4) and not being controlled for
statin therapy (n = 2). Finally, nine eligible studies with
14 treatment arms were included in the systematic re-
view and meta-analysis. The study selection process is
shown in Figure 1.

A total of 764 individuals were incorporated in the nine
eligible controlled trials, including 462 and 302 subjects in
the statin and control groups (participants from the cross-
over trials were counted in both treatment and control
groups), respectively. Included studies were published
between 1991 and 2014. The clinical trials used only atorva-
statin and simvastatin but with different doses. Two studies
used atorvastatin 10 mg day–1 [37, 38], one study atorva-
statin 20 mg day–1 [39], one study atorvastatin 80 mg
day–1 [38], one study simvastatin 10 mg day–1 [40], one
study simvastatin 20 mg day–1 [41], one study simvastatin
30 mg day–1 [42], three studies simvastatin 40 mg day–1

[41, 43, 44] and one study simvastatin 80 mg day–1 [45].
The range of intervention periods was from 3 weeks [42]
to 2 years [41]. Study designs of included studies were par-
allel [38–41, 43–45] and crossover [37, 42]. Selected
trials enrolled subjects with primary hypercholesterolaemia
[41, 43, 44], type 2 diabetes [38, 42, 45], metabolic syndrome
[37, 40] andmixed dyslipidaemia [39] (Table 1). Finally, most
of the included studies measured FFA concentrations using
an enzymatic assay method [38, 40, 41, 43–45], while three
trials did not specify the method used [37, 39, 42].
Risk of bias assessment
Seven included studies were characterized by lack of
information about the sequence generation, allocation
Br J Clin Pharmacol / 81:5 / 809
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concealment and blinding of participants, personnel and
outcome assessors [37, 38, 41–45]. In addition, two stud-
ies had high risk of bias for sequence generation and al-
location concealment [43, 44]. However, six evaluated
studies showed low risk of bias with respect to selective
outcome reporting and other sources of bias [38–41, 43,
45]. Finally, all trials had low risk of bias for incomplete
outcome data. Details of the quality of bias assessment
are shown in Table 2.
Effect of statin therapy on plasma FFA
concentrations
Meta-analysis of data from 14 treatment arms revealed a
significant reduction in plasma FFAs following treatment
with statins (WMD –19.42%, 95% CI –23.19, –15.64,
P< 0.001; I2 65.27%). This effect was robust in the sensitivity
analysis (Figure 2). In subgroup analysis, reductions in
plasma FFA concentrations were observed in both subsets
of trials with treatment durations <12 weeks (WMD –

7.38%, 95% CI –13.36, –1.40, P = 0.016; I2 0%) and ≥12 weeks
(WMD –23.51%, 95%CI –25.88, –21.14, P< 0.001; I2 52.41%),
though the effect size was numerically greater in the latter
group (Figure 3). With respect to the type of statin, there
were significant reductions in plasma FFA concentrations
with both atorvastatin (WMD –20.56%, 95% CI –24.51, –
16.61, P < 0.01; I2 71.91%) and simvastatin (WMD –18.05%,
95% CI –28.12, –7.99, P < 0.001; I2 61.81%) (Figure 4).
Meta-regression
Random effects meta-regression was performed to evaluate
the impact of potential moderators on the estimated effect
size. Changes in plasma FFA concentrations were indepen-
dent of treatment duration (slope –0.10, 95% CI –0.30,
0.11, P = 0.354), statin dose (slope –0.08, 95% CI –0.33,
0.16, P = 0.514) and magnitude of LDL-C reduction (slope
0.55, 95% CI –0.17, 1.27, P = 0.133) by statins (Figure 5).
Publication bias
The funnel plot of standard error vs. effect size (mean differ-
ence) was asymmetric and suggested potential publication
bias. Presence of publication bias was also suggested
by Egger’s linear regression (intercept =1.05, standard
error = 0.48; 95% CI = 0.004, 2.10, t = 2.19, df = 12.00,
two-tailed P = 0.049) but not Begg’s rank correlation test
(Kendall’s Tau with continuity correction =0, z = 0, two-
tailed P value =1.000). After adjustment of effect size for
potential publication bias using the ‘trim and fill’ correction,
five potentially missing studies on the left side of the funnel
plot were imputed leading to a corrected effect size that
was greater than the initial estimate (WMD –21.54%, 95%
CI –25.44, –17.64) (Figure 6). The ‘fail-safe N’ test showed
that 1417 studies would be needed to bring the WMD
down to a non-significant (P > 0.05) value.
Discussion

The findings of the present meta-analysis suggest that
statins are associated with a significant reduction in the
plasma concentrations of FFAs. This effect that was inde-
pendent of statin type, treatment duration and dose and
magnitude of changes in plasma LDL-C concentrations. It
has been reported that high concentrations of FFAs
induce oxidative stress, inflammation and insulin resistance
by activating the nuclear factor-kappa B pathway and pro-
moting increased reactive oxidant species [17]. Therefore,
the decrease in FFA concentrations after statin therapy
may have important clinical implications slowing the pro-
gression of atherogenesis and consequently a lower cardio-
vascular risk. However, these potential effects of statins as
antioxidant and anti-inflammatory through the reduction
of FFA concentrations are still uncertain and remain to be
clarified in further studies. Although the effect of statins
on FFA metabolism is unclear, there are several mecha-
nisms which may be involved. In this regard, acetyl
coenzyme A carboxylase and fatty acid synthase, two im-
portant regulatory enzymes in fatty acid biosynthesis, could
be regulated simultaneously by HMG-CoA reductase
enzyme at the genomic level. Therefore, activity of both
enzymes could be influenced by statin therapy [46, 47].
Since HMG-CoA reductase and acetyl coenzyme A carbox-
ylase are reversibly inactivated through phosphorylation
by AMP-activated protein kinase [48], down regulation of
this enzyme by sterol deficiency would increase acetyl
coenzyme A carboxylase activity after statin therapy when
regulatory sterols are absent [49]. In addition, a pleiotropic
effect of statins on peroxisome proliferator-activated
receptor-α (PPARα) expression has been described. Statins
activate PPARα, which increases the hepatic fatty acid
uptake and promotes the transformation of fatty acids to
acyl-coenzyme A, resulting in increased β-oxidation and re-
duced availability of fatty acids [50]. However, available
data on the effects of statins on plasma FFA concentrations
in humans is still limited and is based on small scale studies.
The aim of the present study was to obtain more robust
evidence on the impact of statins on plasma FFA concen-
trations through combining individual studies and apply-
ing a random effects meta-analysis.

Circulating FFAs mainly derive from adipose tissue
lipolysis by the action of lipase. Hepatic FFAs are available
from de novo lipogenesis and uptake of triglyceride-rich
lipoproteins, cholesteryl esters, and plasma FFAs. Fatty acid
derivatives can serve as ligands for the peroxisome
proliferator-activated receptors (PPARs) [51], particularly
PPAR-α which is considered as the most important regula-
tor of intra and extracellular fatty acid metabolism. In fact,
PPAR-α activation decreases VLDL synthesis and secretion,
increases plasma HDL, decreases triglyceride concentra-
tions and enhances fatty acid oxidation [52]. Interestingly,
lipid lowering drugs have shown a reduction of serum total
fatty acid concentration while simultaneously increasing
Br J Clin Pharmacol / 81:5 / 811



Figure 2
Forest plot displaying weighted mean difference and 95% confidence intervals for the impact of statin therapy on plasma FFA concentrations
(I2 65.27%). Lower plot shows leave-one-out sensitivity analysis

Table 2
Quality of bias assessment of the included studies according to the Cochrane guidelines

Study
Sequence
generation

Allocation
concealment

Blinding of participants, personnel
and outcome assessors

Incomplete
outcome data

Selective outcome
reporting

Other sources
of bias

Bays et al. [39] L L U L L L

Huptas et al. [37] U U U L U L

Krysiak et al. [43] H H L L L L

Krysiak et al. [44] H H L L L U

Mitropoulos et al. [41] U U L L L L

Paolisso et al. [42] U U U L U L

Plat et al. [40] U L L L L L

DALI Study Group [38] U U U L L L

Szendroedi et al. [45] U U U L L L

L, low risk of bias; H, high risk of bias; U, unclear risk of bias.
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Figure 3
Forest plot displaying weighted mean difference and 95% confidence intervals for the impact of statin therapy on plasma FFA concentrations in trials
with treatment durations of <12 weeks (upper plot) (I2 0%) and ≥12 weeks (lower plot) (I2 52.41%)

Figure 4
Forest plot displaying weighted mean difference and 95% confidence intervals for the impact of atorvastatin (upper plot) (I2 71.91%) and simvastatin
(lower plot) (I2 61.81%) on plasma FFA concentrations

Statin therapy and free fatty acids
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Figure 5
Meta-regression plots of the association between mean changes in plasma FFA concentrations with duration of statin therapy (A), statin dose
(expressed as equivalent dose of atorvastatin; B) and magnitude of LDL-C reduction (C)

A. Sahebkar et al.
the proportion of long chain polyunsaturated fatty acids
and precursor fatty acids for eicosanoid production [53].
Circulating total fatty acids are found in different forms:
45% in triacylglycerols, 15% in cholesteryl esters, 35% in
phospholipids and about 5% as non-esterified free fatty
acids [53]. Between 75% and 80% of serum cholesterol is
esterified with fatty acids and only 20% to 25% is non-
esterified cholesterol [53]. Nonetheless, statins appear to
exert their effects on the metabolism and serum composi-
tion of FFAs through disturbing the biogenesis of isolated
fatty acids independently of the mechanism that regulates
lipoprotein synthesis and secretion. In this context, the re-
sults of meta-regression analysis revealed that changes in
814 / 81:5 / Br J Clin Pharmacol
plasma FFA concentrations were independent of the mag-
nitude of LDL-C reduction. This lack of dependence of FFA
changes on the potency and duration of statin treatment is
suggestive of a class effect that is independent of degree of
inhibition of HMG-CoA reductase. As referred to above, it is
likely that enhancement of PPAR-α expression and activity
in liver and muscle tissues is responsible for the FFA-
reducing effect through increasing FFA uptake, FFA conver-
sion to acyl-CoA and β-oxidation of FFAs [54].

There is evidence indicating that treatment with statins
is a risk factor for the development of new onset type 2 di-
abetes [55], though the causes of this negative effect re-
main unexplained. In this regard, it has been suggested



Figure 6
Funnel plot displaying publication bias in the studies reporting the impact of statin therapy on plasma FFA concentrations. Open diamond represents
observed effect size; closed diamond represents imputed effect size

Statin therapy and free fatty acids
that statins may contribute to insulin resistance and impair
β-cell function [56]. In animal models, long term treatment
with statins increased insulin resistance in the adipose
tissue [57]. There is evidence indicating that both increased
efflux of FFAs from adipose tissue and impaired insulin-
mediated skeletal muscle uptake of FFAs increase fatty acid
flux to the liver promoting the development of peripheral
insulin resistance [58, 59]. The association between plasma
FFA concentrations and insulin resistance has been
supported by epidemiological studies [60]. There is robust
evidence from published meta-analyses indicating that
although statin therapy increases the risk of new-onset
diabetes, the risk is not equivalent for all statins. It has been
reported that the diabetogenic effect of statins depends on
the type (being highest with rosuvastatin) and dose of
statins (a higher risk at higher doses) [61, 62]. In this
context, it is important to note that none of the studies
included in the present meta-analysis included a
rosuvastatin arm, and except one trial, all other included
studies used a mild to moderate intensity statin therapy
regimen. Hence, the overall set of trials included in this
meta-analysis may not fully represent the impact of a
highly diabetogenic statin regimen on plasma concentra-
tions of FFAs, and future studies are required to see if a
similar or differential effect on plasma FFAs could be seen
in trials with rosuvastatin and high intensity statin regi-
mens. Moreover, in spite of some controversies, it has been
shown that in diabetic subjects statin therapy is not associ-
ated with an adverse impact on glycaemic index and
insulin resistance [63]. Therefore, since diabetes was either
the main inclusion criteria or comorbidity in most of the
studies included in the present meta-analysis, it is unlikely
that the diabetogenic effect of statins has occurred
predominantly in the overall population studied in our
analysis. Hence, further evidence is required to clarify if
the FFA-reducing effect of statins can be replicated in
non-diabetic subjects receiving high intensity statins,
particularly rosuvastatin.
Some limitations of this study should be mentioned.
The most important one was the small sample size in
several of the included studies. As another limitation,
changes in plasma FFA concentrations were not among
the primary objectives of the included studies. Thus, further
studies are warranted to evaluate the effect of statin
therapy on FFA concentrations as primary outcome to
obtain more robust evidence about the effects of statins
on circulating FFA status. Finally, the diversity of statin
types in the included studies was low and administered
statins were limited to atorvastatin and simvastatin. While
this may reduce the inter-study heterogeneity, it limits
the generalizability of findings to other statin types.
Conclusion

In conclusion, results of this meta-analysis, being the first of
its kind, showed that statin therapy significantly reduces
plasma FFA concentrations. Future investigations are re-
quired to clarify if this effect of statin therapy accounts, at
least in part, for the established cardiovascular benefits of
these drugs. Also, the association of this effect of statins
with the hepatic content of FFAs and risk of hepatic insulin
resistance needs to be elucidated in future studies. Finally,
the magnitude of the FFA lowering effects of statins in
comparison with other conventional and novel lipid lower-
ing therapies [64–70] remains to be clarified.
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